385 research outputs found

    Sequential Quantum Teleportation of Optical Coherent States

    Full text link
    We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F_1 = 0.70 \pm 0.02 and F_2 = 0.75 \pm 0.02, while the fidelity between the input and the sequentially teleported states is determined as F^{(2)} = 0.57 \pm 0.02. This still exceeds the optimal fidelity of one half for classical teleportation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum teleportation experiment with optical coherent states.Comment: 5page, 4figure

    Bipolar diathermy for the outpatient control of posterior epistaxis

    Get PDF
    LetterThe original publication is available at http://www.samj.org.za[No abstract available

    Experimental generation of four-mode continuous-variable cluster states

    Full text link
    Continuous-variable Gaussian cluster states are a potential resource for universal quantum computation. They can be efficiently and unconditionally built from sources of squeezed light using beam splitters. Here we report on the generation of three different kinds of continuous-variable four-mode cluster states. In our realization, the resulting cluster-type correlations are such that no corrections other than simple phase-space displacements would be needed when quantum information propagates through these states. At the same time, the inevitable imperfections from the finitely squeezed resource states and from additional thermal noise are minimized, as no antisqueezing components are left in the cluster states.Comment: 5 pages, 4 figure

    Quantum versus classical domains for teleportation with continuous variables

    Get PDF
    By considering the utilization of a classical channel without quantum entanglement, fidelity Fclassical=1/2 has been established as setting the boundary between classical and quantum domains in the teleportation of coherent states of the electromagnetic field [S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, J. Mod. Opt. 47, 267 (2000)]. We further examine the quantum-classical boundary by investigating questions of entanglement and Bell-inequality violations for the Einstein-Podolsky-Rosen states relevant to continuous variable teleportation. The threshold fidelity for employing entanglement as a quantum resource in teleportation of coherent states is again found to be Fclassical=1/2. Likewise, violations of local realism onset at this same threshold, with the added requirement of overall efficiency η>2/3 in the unconditional case. By contrast, recently proposed criteria adapted from the literature on quantum-nondemolition detection are shown to be largely unrelated to the questions of entanglement and Bell-inequality violations

    Practical effects in the preparation of cluster states using weak non-linearities

    Full text link
    We discuss experimental effects in the implementation of a recent scheme for performing bus mediated entangling operations between qubits. Here a bus mode, a strong coherent state, successively undergoes weak Kerr-type non-linear interactions with qubits. A quadrature measurement on the bus then projects the qubits into an entangled state. This approach has the benefit that entangling gates are non-destructive, may be performed non-locally, and there is no need for efficient single photon detection. In this paper we examine practical issues affecting its experimental implementation. In particular, we analyze the effects of post-selection errors, qubit loss, bus loss, mismatched coupling rates and mode-mismatch. We derive error models for these effects and relate them to realistic fault-tolerant thresholds, providing insight into realistic experimental requirements.Comment: 8 pages, 5 figure

    Quasiprobability methods for multimode conditional optical gates

    Get PDF
    We present a method for computing the action of conditional linear optical transformations, conditioned on photon counting, for arbitrary signal states. The method is based on the Q-function, a quasi probability distribution for anti normally ordered moments. We treat an arbitrary number of signal and ancilla modes. The ancilla modes are prepared in an arbitrary product number state. We construct the conditional, non unitary, signal transformations for an arbitrary photon number count on each of the ancilla modes.Comment: 6 pages, 2 figures. JOSA B Special Issue "Optical Quantum Information Science

    Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state

    Get PDF
    We present a protocol for performing entanglement swapping with intense pulsed beams. In a first step, the generation of amplitude correlations between two systems that have never interacted directly is demonstrated. This is verified in direct detection with electronic modulation of the detected photocurrents. The measured correlations are better than expected from a classical reconstruction scheme. In the entanglement swapping process, a four--partite entangled state is generated. We prove experimentally that the amplitudes of the four optical modes are quantum correlated 3 dB below shot noise, which is due to the potential four--party entanglement.Comment: 9 pages, 10 figures, update of references 9 and 10; minor inconsistency in notation removed; format for units in the figures change

    Axillary nodal metastasis at primary presentation of an oropharyngeal primary carcinoma: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Axillary nodal metastasis is very rare in head and neck squamous cell carcinoma. The few cases reported in the literature all involve patients who have previously undergone either neck dissection alone, or neck dissection and radiotherapy to the neck, and subsequently develop delayed recurrences of disease, with axillary nodal involvement.</p> <p>Case presentation</p> <p>We present the case of a 62-year-old man of Cape Malay ethnicity, who presented with an oropharyngeal squamous cell carcinoma, and cervical and axillary nodal metastasis at primary presentation.</p> <p>Conclusion</p> <p>Whilst previous reports in the literature suggest routine examination of the axilla is advisable in patients with previously treated neck cancer and recurrence of head and neck cancer, we propose that the axilla should be routinely examined in new cases, particularly when there is involvement of the level 5 nodes.</p

    Hybrid quantum repeater using bright coherent light

    Full text link
    We describe a quantum repeater protocol for long-distance quantum communication. In this scheme, entanglement is created between qubits at intermediate stations of the channel by using a weak dispersive light-matter interaction and distributing the outgoing bright coherent light pulses among the stations. Noisy entangled pairs of electronic spin are then prepared with high success probability via homodyne detection and postselection. The local gates for entanglement purification and swapping are deterministic and measurement-free, based upon the same coherent-light resources and weak interactions as for the initial entanglement distribution. Finally, the entanglement is stored in a nuclear-spin-based quantum memory. With our system, qubit-communication rates approaching 100 Hz over 1280 km with fidelities near 99% are possible for reasonable local gate errors.Comment: title changed, final published versio

    Quantum Repeaters using Coherent-State Communication

    Full text link
    We investigate quantum repeater protocols based upon atomic qubit-entanglement distribution through optical coherent-state communication. Various measurement schemes for an optical mode entangled with two spatially separated atomic qubits are considered in order to nonlocally prepare conditional two-qubit entangled states. In particular, generalized measurements for unambiguous state discrimination enable one to completely eliminate spin-flip errors in the resulting qubit states, as they would occur in a homodyne-based scheme due to the finite overlap of the optical states in phase space. As a result, by using weaker coherent states, high initial fidelities can still be achieved for larger repeater spacing, at the expense of lower entanglement generation rates. In this regime, the coherent-state-based protocols start resembling single-photon-based repeater schemes.Comment: 11 pages, 8 figure
    corecore